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bstract

A comprehensive, three-dimensional analysis of a polymer electrolyte membrane (PEM) fuel cell has been developed to study the performance of
his device under different operational conditions. This steady-state analysis is single-phase and non-isothermal. A commercial computational fluid
ynamics (CFD) program provided a numerical platform for solving the conservation equations for species, energy, charge, mass and momentum.
ifferent boundary conditions were added to a computational domain to simulate single channel PEM fuel cell. The electrochemistry involved in

his model was added by a set of user-defined subroutines that feature: electrochemical reactions, electric and ionic charge and heat generation.
he calculations were then solved by an iterative method following an adapted computational procedure. The results were validated with other

omputational models and experimental data. These show a noticeable non-uniform distribution of the current density across the catalyst layer
CL) at different operational conditions. The results emphasize on the differences of anodic and cathodic activation overpotentials, the oxygen
ransport limitations and the ohmic losses distributions of both proton and electric overpotentials.

2007 Elsevier B.V. All rights reserved.
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. Introduction

A fuel cell is as an electrochemical converter. It can be said
hat a fuel cell is a device that converts chemical energy into
lectrical power and ideally can continue to operate as long as it
s fed with suitable fuels and oxidants and the reaction products
re being removed.

Electrochemical power sources differ from others, such as
hermal power plants because the energy conversion occurs with-
ut any intermediate steps. For example, in the case of thermal
ower plants, fuel is first converted into thermal energy and
hen into electric power via generators. In fuel cells systems this
ulti-step process is achieved by electrochemical reactions. As
consequence, electrochemical systems show some advantages,
uch as energy efficiency.

� The work presented in this paper is part of C. Martı́nez Baca’s PhD at Imperial
ollege.
∗ Corresponding author. Tel.: +44 7990615222.

E-mail address: carlos.martinez@rrfcs.com (C.M. Baca).
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otic; Overpotentials

There is extensive literature available on numerical ways of
odelling fuel cells. Polymer electrolyte membrane (PEM) fuel

ells have been modelled for more than 15 years. Although one-
imensional in nature some of the early analyses remain the
asis for most of the more elaborated models to date. Bernardi
nd Verbrugge [5] made a big emphasis on the electrochemistry
nd diffusive processes inside the fuel cell’s membrane electrode
ssembly (MEA). Springer et al. [22] provided a great insight
nto the water transport process inside the MEA. Ticianelli et
l. [25] made a numerical model which introduced a way of
alculating locally the cell potential. Fuller and Newman [11]
roduced a model that could predict the performance of the cell
long a longitudinal channel by integrating the solution at var-
ous points down the channel. They pinpointed the effect of
ehydration in the fuel cell’s membrane due to the electroos-
otic drag. Lampimen and Fomino [15] introduced entropy

hanges in to their model. Gurau et al. [12] used a special han-

ling of the transport equations which enabled them to use the
ame numerical method for a unified computational domain.
his domain constituted a polymer membrane, two catalyst lay-
rs (CLs), two gas diffusers (GDs) and two feeding channels.

mailto:carlos.martinez@rrfcs.com
dx.doi.org/10.1016/j.jpowsour.2007.12.023
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Fig. 1. Diagram of the solution procedure.
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his in turn eliminated the need for prescribing arbitrary bound-
ry conditions for the fuel cell interfaces. The papers mentioned
bove are the foundation of the model presented in this paper.

As PEM fuel cell models were becoming more specific, peo-
le began to realize that one of the most complicated issues in
heir analyses was the transport of water in the PEM. Zawodzin-
ki et al. [28] experimented on several types of proton exchange
embranes. They reported water sorption characteristics, dif-

usion coefficient, electroosmotic drag and conductivity. Van
ee et al. [16] and Shimpalee et al. [17] conducted a thorough
xperiment concerning water transport in the membrane that was
alidated with a numerical model. Most of their papers conclude
hat the velocity of the water inside the membrane is too small
nd has little effect on the overall water mass flow rate. Later
n Zawodzinski et al. [27] and more recently Kulikovsky [14]
nd Sui and Djilali [23] confirmed that the electroosmotic drag
oefficient can be considered as constant for a wide range of
ater content in the membrane.
The three-dimensional PEM fuel cell model, presented by

utta et al. [9] showed how to modify a commercial compu-
ational fluid dynamics (CFD) code to include the necessary
lectrochemical processes. This and subsequent publications
10,18] stressed the importance of the diffusive and convective
ransport of reactants and products in the MEA and feeding chan-
els. These publications also introduced geometric changes in
heir analyses. This approach derived in a better understanding of
he overall geometry of the cell and gave way to numerous design
nalyses. Later, some papers focused exclusively on how to opti-
ise the dimensions of specific PEM fuel cell components such

s gas channel aspect ratios, gas diffusers and electrolyte thick-
esses, nafion content on CLs and catalyst porosities (Fig. 1).

Most PEM fuel cell models available in the literature assume
hat the electrochemical reactions take place at an interface
etween the diffusers and the electrolyte. It is convenient to
odel CLs as interfaces because it is possible to define arbitrary

oundary conditions at both surfaces of this “wall” such as heat
ransfer, mass sources or fixed temperature and concentrations.
n reality CLs are normally a few microns thick and in this paper
e address the distributions of the activation overpotentials and

urrent densities across the CLs. The computational procedure
resented in this model is able to measure spatial distribution
f these losses inside these thin layers. In general we try to pre-
ict the distributions of the overpotentials across the model’s
EA.

. Model description

.1. Fuel cell principles

The computational domain of our model is shown in Fig. 2.
he model constitutes the anode, cathode and electrolyte regions
f a PEM fuel cell. Hydrogen-rich fuel is fed in to the anode
hannel, where part of this travels across the GD. At the anode

L an oxidation reaction splits the hydrogen into protons and
lectrons according to:

2 → 2H+ + 2e− (1)
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Fig. 2. Computational domain of the model.

Driven by an electric field, the protons migrate across the
EM from the anode towards the cathode. The free electrons
re conducted across the cell normally through the platinum
upported carbon black particles embedded in the CLs, then
hrough the electric conductive fibers of the GDs, the current
ollectors (CCs) and through an external circuit which may
nclude a load and back again finishing at the cathode CL (see
cheme 1).

The cathode channels are fed with air. The oxygen in the air
ravels through the GD towards the CL where it combines with
he migrating protons and the electrons to form water according
o the following exothermic reduction reaction:

1
2 O2 + 2H+ + 2e− → H2O (2)

The overall process, consumes reactants generating electric-
ty, water and heat.

The steady-state PEM fuel cell model presented in this paper
s three-dimensional, single-phase and non-isothermal and it
omprises the following features:

multi-component flow,
convective and conductive heat transfer,
transport of species across a porous media,
electrochemical reactions,
electric and protonic charge conduction.

The equations governing these processes include the full
ass, momentum, species, charge and energy conservation

quations. Given some appropriate boundary conditions, an
xtensive suite of user subroutines and a costumed itera-
ive procedure, the commercial CFD solver Star-CD v3.24

rovided the numerical platform to process the calcula-
ions.

This model assumes that the gases in the channels, GDs and
Ls behave as compressible ideal gases and that the membrane is

Scheme 1. Schematic PEM fuel cell.
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electroneutral” and behaves as a gas barrier. It is also assumed
hat there is a constant potential at the interface between the
node GD and the CCs. Further, these interfaces and the chan-
els/CCs interfaces are assumed to be adiabatic. We think that
he biggest limitation of this model is the assumption of single-
hase modelling.

.2. Model’s domain and geometry

Fig. 2 shows the model’s computational domain. It contains
round 30,000 nodes divided into four separate domains. These
re: channels, GDs, CLs and a PEM.

The channels are 12 mm long and have a cross sectional
rea of 0.25 mm2. The MEA represents the GDs, CLs and elec-
rolyte. It is 10 mm long, 1 mm wide and 0.69 mm thick. The
D, CL and electrolyte are 300, 20 and 50 �m thick, respec-

ively.

.3. Electrochemical reaction rate

The local current densities, ia and ic, can be accurately
redicted at each of the catalyst layers elements according
o Bard and Faulkner [3]. The correct implementation of the
utler-Volmer equation in the model gives the local current
ensity at the cathode (Eq. (3)) and anode (Eq. (4)) catalyst
ayers.

c = i0,cXO2

[
exp

(
4αcF

RT
ηact,c

)
− exp

(
−4(1−αc)F

RT
ηact,c

)]
(3)

a = i0,aX
0.5
H2

[
exp

(
2αaF

RT
ηact,a

)
− exp

(
−2(1−αa)F

RT
ηact,a

)]
(4)

here i0,c/a, ηact,c/a and αa/c are the exchange current densi-
ies, the activation overpotentials and the transfer coefficients,
espectively. Subscripts a and c refer to anode and cathode,
espectively. The two unknown variables in these equations
re the concentration of the reactants and the activation over-
otentials. The concentration of the reactants is solved by
he conservation of species equation in the catalyst lay-
rs (see Section 2.4.3). The activation overpotentials have a
pecial solving procedure which is given below in Section
.5.

.4. Model equations

This model has been programmed to work with two gas mix-
ures, hydrated hydrogen and hydrated air. The transport of gas

ixtures is solved by the mass (Eq. (5)), momentum (Eq. (6))

nd energy (Eq. (11)) conservation equations:

∂

∂xj
(ρuj) = sp (5)
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∂

∂xj
(ρujui − τij) = − ∂P

∂xi
(6)

here sp is the mass source term, xi are the cartesian coordinates
i = x, y, z), ui the absolute fluid velocity component in direc-
ion xi, τij the viscous stress tensor components, P the pressure
nd ρ the density.

The viscous stress tensor component τij in Eq. (6) is calcu-
ated as follows:

ij = μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
μ
∂uk

∂xk
δij (7)

here μ is the molecular viscosity, δij the Kronecker delta.
Each species m of the gas mixtures, whose local concentration

s expressed as a mass fraction Ym, is assumed to be governed
y a species conservation equation of the form:

∂

∂xj

(
ρujYm −Dmρ

∂Ym

∂xj

)
= sm (8)

here sm the rate of mass production of species m and Dm is
he molecular diffusivity of species m.

The molecular diffusivity of the gas mixtures changes due to
emperature, pressure and species concentrations. During oper-
tion, fuel cells vary their gas compositions due to chemical
eactions. Therefore a variable diffusion coefficient for the gases
s needed.

In a binary gas mixture with components m and n, such as
ydrogen and water vapour, the binary diffusion coefficients,
mn, can be approximated by Eq. (9) according to Cussler [8]:

mn = Dmn,ref
Pref

P

(
T

Tref

)1.75

(9)

here Dmn,ref is the reference diffusion coefficient of the mix-
ure at pressurePref and temperature Tref. In ternary systems, the
alculation of effective diffusion coefficients can become very
omplex. Nevertheless PEM fuel cells operate at a range of tem-
eratures and pressures which allow alternative approximation
ethods to these coefficients to be as accurate as the traditional

nd more elaborate models. Mills [20] suggested a relation based
n a “mixture rule” that proves applicable to PEM fuel cell gas
ixtures [2], such as oxygen, nitrogen and water vapour, and is

iven as

m,mix = 1 −Xm
N∑

n=1;n�=m
(Xn/Dmn)

(10)

here Xm refers to the molar fraction of species m. Eq. (10)
alculates the effective diffusion coefficient, Dm,mix of species

in a mixture composed of several different components. For
urther insight into the validation and background of Mills’s
odel please refer to [1].

Heat transfer is implemented with Eq. (11). This is obtained

y multiplying the species conservation equation (Eq. (8))
f each species m of the mixture by its heat of forma-
ion, Hm, and subtracting it from the energy conservation

w

s
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quation.

∂

∂xj

(
ρhtuj − k

∂T

∂xj
+
∑
m

ht,mρνm,j

)

= uj
∂P

∂xj
+ τij

∂ui

∂xj
+ sh −

∑
m

Hmsm (11)

ere sm is the rate of production or consumption of species
due to a chemical reaction, k is the thermal conductivity,

m,j the diffusion velocity vector in the j direction and ht,m
he thermal enthalpy of species m which is defined by Eq.
11)

t = c̄pT − cp,refTref (12)

here c̄p is the mean constant-pressure specific heat at tem-
erature T and cp,ref a reference specific heat at temperature
ref.

The reactants and products are assumed to behave as ideal
ases, thereby the density ρ of the gas mixture is calculated
ith

= P

R̄T (
∑
m

(Ym/Mm))
(13)

here Mm is the molecular weight of species m.

.4.1. Conservation equations in the channels
The transport of gaseous species in the fuel cell channels, is

odelled with the following conservation equations for mass
Eq. (14)), momentum (Eq. (15)), species (Eq. (16)) and energy
Eq. (17))

∂

∂xj

(
ρuj
) = 0 (14)

∂

∂xj
(ρujui − τij) = − ∂p

∂xi
(15)

∂

∂xj

(
ρujYm −Dm,mixρ

∂Ym

∂xj

)
= 0 (16)

∂

∂xj

(
ρhtuj − kmix

∂T

∂xj
+
∑
m

ht,mρνm,j

)

= uj
∂P

∂xj
+ τij

∂ui

∂xj
(17)

here kmix is the mixture heat conductivity of species m given
y Eq. (18)[19] formula

eff
mix = 1

2

⎡
⎣
(

N∑
Xnkn + 1

)(
N∑Xn

kn

)−1
⎤
⎦ (18)
n=1 n=1

here kn is the thermal conductivity of component n.
The velocities at the inlet boundary of the channels were

et as a function of the total current produced, I, the channel
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ross sectional area, Ach and the stoichiometric ratio ζ. The
toichiometry ratio, ζ, is defined as

= mass of fuel or oxidant input to the cell

mass of fuel or oxidant reacted in the cell
(19)

The total current is a variable dependent on the cell overpoten-
ials and species concentrations that change during the solution
rocedure. Therefore velocities are updated on an iterative basis,
o that the stoichiometric ratios at the inlet boundaries are always
ept constant. These are given as

c = ζc
MO2I

YO2,inρc,inAch
, ua = ζa

MH2I

YH2,inρa,inAch
(20)

here uc and ua are the inlet velocities and ζc and ζa the stoi-
hiometry ratios for cathode and anode, respectively. MO2 and

H2 are the molar masses for oxygen and hydrogen. The mass
ractions of oxygen and hydrogen at the inlets are represented
y YO2,in and YH2,in and the densities for both gas mixtures, at
he cathode and anode inlet boundaries are given by ρc,in and
a,in, respectively. At the channel outlet boundaries, Neumann
oundary conditions (zero concentration gradient normal to the
utlet face) are prescribed for the normal velocities, tempera-
ure and species equations. Pressure is prescribed at the outlet
oundaries to match the desired operational pressure. The tem-
erature at the surrounding walls of the channels is assumed to
e constant.

.4.2. Conservation equations in the gas diffusers
The gas transport in the GDs is restricted by the material’s

orosity, εGD, which is the fractional void volume. This changes
he conservation equations in the following way:

∂

∂xj

(
ρεGDuj

) = 0 (21)

j = −kp,GD

μ

∂p

∂xj
(22)

∂

∂xj

(
ρεGDujYm −Deff

m,GDρεGD
∂Ym

∂xj

)
= 0 (23)

∂

∂xj

(
ρhtεGDuj − keff

GD(1 − εGD)
∂T

∂xj
+
∑
m

ht,mρνm,j

)

= uj
∂P

∂xj
+ τij

∂ui

∂xj
(24)

The mass, momentum, species and energy equations (Eqs.
21)–24) are reduced by εGD. The momentum equation has
een replaced by Darcy’s law, where kp,GD is the hydraulic
ermeability of the gas mixture in the GDs. The species binary
iffusion coefficients in Eq. (23) are reduced by the Bruggeman
orrection [4]

eff γGD

mn = DmnεGD (25)

here γ is the tortuosity of the medium.
Electric conduction through the GD fibers is modelled with

q. (26). It relates the flux of current to the gradient of the

s

w
c
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lectric potential φe− . In this conduction process the charge is
ccelerated by an electric field and the intrinsic resistance of the
onductive material

∂

∂xj

(
−κe−,GD

∂φe−

∂xj

)
= 0 (26)

here κe−,GD is the electric conductivity of the GD.
It is assumed that the temperature of the CCs is uniform.

hereby a fixed temperature was defined at these boundaries.
t is also assumed that the electric potential at this interface is
xed to a reference value, (see Section 2.5).

.4.3. Conservation equations in the catalyst layers
In this region there are five transport processes: gas

pecies transport through the pores, water transport through the
ydrophilic electrolyte regions and void paths, heat conductiv-
ty through the solid matter, proton conductivity through the
lectrolyte fraction and electric conductivity through the carbon
lack particles.

All electrochemical reactions in a PEM fuel cell occur at
hese thin layers. A pseudo-homogeneous model of the CLs has
een adopted from [6]. It has been assumed that all materials
nd properties of the CL have been homogeneously dispersed
hroughout its whole extent. Therefore, general values can be
rescribed for the entire catalyst region.

The electric potential loss in the PEM is related to the fact that
n electric field is necessary in order to maintain the motion of
he protons through the membrane. This field is provided by the
xistence of a potential gradient across the cell, which is directed
pposite from the outer field that gives the cell potential, and thus
as to be subtracted. It can be shown that this loss obeys Ohm’s
aw, [21]: hence, it can also be assumed that the transport of
rotons (Eq. (27)) is driven by a conduction process similar to
he electric conductivity.

∂

∂xj

(
σH+εγCL

CL
∂φH+

∂xj

)
= sH+ (27)

In Eq. (27)σH+ is the proton conductivity, which is not
onstant and sH+ the source term for proton production.
he proton conductivity is affected by the CL porosity, εCL.

similar relation to the Bruggerman correction is used to
alculate the effective conductivity for protons in the electrolyte
raction of the CLs [2].

The source terms of the proton conservation equation (Eq.
27)), are defined as the rate of production of protonic charge per
nit volume. This scalar is equal to the divergence of the current
ensity, given by the current density divided by the thickness of
he electrode on both, anode and cathode CLs, shown here in
qs. (28)

ic ia

H+,c = −

tCL
, sH+,a =

tCL
(28)

here tCL is the thickness of the catalyst layer. The electric
onductivity in the CLs is modelled in the same way as in
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he GDs

∂

∂xj

(
−κe−,CL

∂φe−

∂xj

)
= se− (29)

here κe−,CL refer to the CLs electric conductivity, which is
ssumed to be constant. Similarly, the rate of production of elec-
ric charge given in Eq. (29) at the anode and cathode CLs, follow
hose of the protons

e−,c = ic

tCL
, se−,a = ia

tCL
(30)

The conservation equations for mass, momentum, species
nd energy in the CLs are:

∂

∂xj

(
ρεCLuj

) = sp (31)

j = −kp,CL

μ

∂p

∂xj
(32)

∂

∂xj

(
ρεCLujYm + −Deff

m,CLρεCL
∂Ym

∂xj

)
= sm (33)

∂

∂xj

(
ρhtεCLuj − keff

CL(1 − εCL)
∂T

∂xj
+
∑
m

ht,mρνm,j

)

= uj
∂P

∂xj
+ τij

∂ui

∂xj
+ sh −

∑
m

Hmsm (34)

The binary diffusion coefficients for gases,Deff
m,CL, in the CLs

re calculated in a similar fashion as in the GD (Eq. (23)) using
CL instead. The source terms for the mass conservation equation
n the cathode and anode catalyst layers (Eq. (31)) are given by
qs. (35) and (36), respectively

p,c =
(
MH2O

2F
− MO2

4F

)(
ic

tCL

)
+ ṅH2Oabs,c (35)

p,a =
(

−MH2

2F

)(
ia

tCL

)
+ ṅH2Oabs,a (36)

whereMO2 ,MH2 andMH2O are the molar masses of oxygen,
ydrogen and water, respectively. The terms where the current
ensity is divided by the thickness of the catalyst layer in Eqs.
35) and (36) refer to the rate of production of electric charge
er unit volume.

The source terms for the oxygen and hydrogen conservation
quation (Eq. (33)) in the CLs are given Eqs. (37) and (38),
espectively

O2 =
(

−MO2

4F

)(
ic

tCL

)
(37)

(
M

)(
i
)

H2 = − H2

2F
a

tCL
(38)

The main heat source in PEM fuel cells is given by the reduc-
ion reaction at the cathode CL. The heat sources of the CLs

λ

λ

Sources 178 (2008) 269–281

re given by Eqs. (39) and (40) for the cathode and anode,
espectively.

h,c =
[
T (−�s̄)

4F
+ ηact,c

](
ic

tCL

)
+ i2c

σeff
H+

(39)

h,a = i2a

σeff
H+

(40)

here�s̄ is the entropy change of the oxygen reduction reaction.
he first term on the right-hand-side of Eq. (39) represents the
nergy loss due to entropy changes as well as irreversibilities
ith charge transfer [15]. The hydrogen oxidation reaction heat

ource is very small and has little effect in the cell performance
13].

.4.4. Conservation equation for water in the electrolyte
The electrolyte in a PEM fuel cell is effectively a thin polymer

embrane. It comprises the PEM and a fraction of the CLs
nafion content in the CLs). Its properties allow conduction of
eat, water and protonic charge.

Water plays an important role in the overall cell performance
ecause PEMs have to be hydrated in order to improve their pro-
onic conductivity. Water distribution may hinder or enhance the
uel cell performance. On the one hand there is a risk of having
xcess water which will obstruct the transport of reactants to the
atalyst sites due to the agglomeration of water in the porous
edium. On the other hand de-humidification of the membrane
ay occur, reducing the protonic conductivity. In extreme cases

f complete drying of the membrane, local burn-out of the elec-
rolyte may take place and hydration strain becomes an adverse
ffect threatening the integrity of the material.

The conservation equation for water in the electrolyte is given
s:

∂

∂xj

(
fH2O,j

) = 0 (41)

here fH2O,j is the diffusional flux of water inside the polymer.
here are two driving forces that transport the water absorbed

n the PEM, diffusion and electroosmotic drag.
The PEM absorbs water from the surrounding gases via the

ydrophilic electrolyte fraction in the CLs. This happens when
he equilibrium water content “(λ)” of this fraction is smaller
han that of the surrounding gases. If on the contrary, the λ of the
lectrolyte fraction is higher than that of the surrounding gases
hen water will be given from the polymer to the surroundings.
is defined as the ratio of the number of water molecules to the

umber of charged HSO3 sites. Springer et al. [22] produced the
ollowing relationship for λ based on experiments performed on
afion 117 membranes:
= 0.043 + 17.81a− 39.85a2 + a3 a ≤ 1 (42)

= 14 + 1.4(a− 1) a > 1 (43)
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here the activity of water, a, is related to the partial pressure
f water and the saturation pressure of water Psat, according to:

= XH2OP

Psat
(44)

here XH2O is the molar fraction of water. The saturation pres-
ure of water Psat is given by expression (45) as reported by
pringer et al. [22]

og10Psat = −2.1794 + 0.02953T − 9.1837 × 10−5T 2

+ 1.4454 × 10−7T 3 (45)

here T is given in ◦ C and Psat in atm. Note that when λ > 1
i.e. Eq. (43)) the water vapour is in supersaturated conditions.

The single-phase assumption for water transport in this model
mplies that water can exist in supersaturation in the gas phase
r if condensed, liquid water exists as finely dispersed droplets
s in a mist flow and produces negligible effects on the gas phase
ransport. That is, the water activity calculated based on water
artial pressure is allowed to be greater than unity.

The proton conductivity in the PEM is dependent upon water
ontent λ and temperature. Springer et al. [22] measured the
roton conductivity of Nafion for a range of water activities and
emperatures with fully hydrated membranes. They found an
ctivation energy value for these measurements. This activation
nergy was then assumed to apply for all values of λ. They
btained the following relation from a series of experiments

H+ as a function of λ:

H+ = (0.0043119λ− 0.00326) exp

[
1268

(
1

303
− 1

T

)]
(46)

he properties reported by Springer et al. [22] are used in
he baseline calculations. The conservation equation for pro-
on transport in the PEM is then given by Eq. (47) as a pure
lectrical conduction process.

∂

∂xj

(
−σH+

∂φH+

∂xj

)
= 0 (47)

The diffusion transport of the dissolved water in the mem-
rane is related to its concentration gradient by an ordinary
iffusion process, i.e. Fick’s law of diffusion

H2O,j = −ΓH2O,m
∂CH2O

∂xj
(48)

here ΓH2O,m is the water diffusion coefficient in the electrolyte
iven in Eq. (49)[28]:

H2O,m = 1 × 10−10
(

2.8628 ln

(
λ

1818

)
− 1.63795

)
(49)

The electroosmotic drag is associated with the protonic
harge. It has been shown that the protonic charge in the mem-

rane has a drag effect with water which is related to the polar
tructure of the water molecules [27]. This “adherence effect”
akes the water molecules stick to the protons that are mov-

ng from one charged site to another, driving the water from the

s

s
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node towards the cathode. The electroosmotic drag coefficient
nd” is the number of water molecules carried per proton across
he membrane as electric current is passed under conditions
f no water concentration gradient. Because this mechanism is
trongly influenced by the protonic charge, its transport can be
elated to the local current density via Eq. (50)

˙H2Odrag = nd

(
i

F

)
(50)

We assume that electroneutrality prevails inside the PEM.
hat is, the proton concentration in the polymer is assumed to be
onstant and equal to the concentration of the fixed sulfonic acid
roups. Therefore the proton transport equation is conserved
nside the PEM. Further the electroosmotic drag coefficient is
ssumed to be constant and equal to one [27]. In our model
lectroosmosis only occur where the local current density is
ariable, that is in the polymer fraction of the CLs, as indicated
y Eq. (50). This does not mean that the electroosmotic drag
as no effect on the water transport through the membrane. The
lectroosmotic drag term enters the water conservation equation
s a boundary condition for the electrolyte fraction at the CLs.
he total water flux should be equal to the electroosmotic drag
nd diffusive flux.

Water absorption and desorption take place on the polymer
raction (25%) inside the CLs. The rate of water absorp-
ion/desorption ṅH2Oabs , is based on the difference between the
quilibrium water content in the polymer fraction of the CLs,
H2O,m, and the water content of the gas mixture inside the pores
f the CLs,CH2O,g. The water content of either can be calculated
s

H2O = ρm,dry

Mm,dry
λ (51)

here ρm,dry and Mm,dry are the density and molecular mass of
dry membrane.

Relation (52) states that when the water content of the poly-
er fraction is larger than that of the surrounding gases, then
ater should desorb from the membrane. It also indicates that if

he water content of the surrounding gas is greater than that of
he membrane, then water will be absorbed by the polymer.

˙H2Oabs = ψ
(
CH2O,m − CH2O,g

)
(52)

here ψ is a proportionality constant set to 2.5. Higher or lower
roportionality constants increase the concentration differences
pecially at high current densities. The value of ψ will mostly
how its effect under time dependent calculation (STP or freez-
ng conditions), Shimpalee et al. [18] reported values ofψ =1.5
or “start-up” calculation at 298 K and semi-dry membranes.

The absorbed and desorbed water plus the contribution of the
lectroosmotic drag at the anode (Eq. (54)) and cathode (Eq.
53)) CLs, are included into the water conservation equations
ia source terms
H2O,c = ṅH2Odrag,c + ṅH2Oabs,c (53)

H2O,a =
(
MH2O

2F

)(
ia

tCL

)
+ ṅH2Odrag,a + ṅH2Oabs,a (54)
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The conservation equations given in this paper are not solved
by the Star-CD solver in their differential form, but by the finite
volume method, following a fairly well known CFD algorithm,
known as SIMPLE [26].

Table 1
Sources and sink terms of the conservation equations

Equation Anode CL Electrolyte Cathode CL

Mass sp,a – sp,c

Energy sh,a sh,mem sh,c

Oxygen – – sO
76 C.M. Baca et al. / Journal of P

The first term on the right-hand-side of Eq. (54) accounts the
mass defect” due to the reactions. Note that the source terms
n the species conservation equations do not inject or withdraw
ass but instead adjust the concentration of species.
For heat transfer purposes, the membrane is considered a

onducting solid slab. The conservation equation for energy in
his region is given as

∂

∂xj

(
keff

mem
∂T

∂xj

)
= sh,mem (55)

here sh,mem is an energy source term and keff
mem is the effective

eat conductivity of the membrane.
There is a heat source at the electrolyte given by Eq. (56),

ffectively due to ohmic heating

h,m = i2

σeff
H+

(56)

here i is the spatial electric current value.

.5. Computational procedure

In most PEM fuel cell models the catalytic activity is a
unction of the concentration of the reactants. This depen-
ence assumes a constant activation overpotential in the CLs.
his method makes the solution process “easy” to handle; by
ssuming a constant activation overpotential, an average current
ensity can be prescribed before the calculations. A specific cur-
ent density in the cell can be scaled with concentration to match
desired average value.

Bang [2] reported a more detailed method regarding the kinet-
cs in the catalyst layers. In this method the catalytic activity is

function of both concentrations and spatial variation of the
verpotentials. The overpotentials are functions of the concen-
ration of species and overpotentials at their spatial locations.
his model assumes a variable overpotential in the CLs, sim-
lating a variable kinetic activity in these regions. This way to
ddress the cell overpotentials does not allow the user to pre-
ict a given current density before the calculations. Instead this
omes as part of the solution.

The cell potential calculation is given as

cell = Erev − ηact − ηohm (57)

The overpotentials in Eq. (57) are functions of their spatial
ocation. To be able to calculate them at any given location in
he MEA it was necessary to define voltage reference points.
y convention the land area of the anode’s GD was arbitrar-

ly fixed to a zero potential boundary condition. This implies
hat the absolute potential in the anode’s electrode is negative
ecause the electric charge is being transferred from the anode
eaction sites to the anode’s GD/CC interface. The calculated

ell potential is given at the cathode’s GD/CC interface. The
aximum potential is then given in the cathode’s CL, as shown

n Fig. 3. Within this context the ohmic overpotential ηohm can be
alculated by the protonic and electric overpotentials less their

H
W
P
E

ig. 3. Ohmic overpotential distributions across the membrane electrode assem-
ly.

espective reference potential, as

ohm =
(
|ηe−| − |Eref

e−|
)

+
(
|ηH+| − |Eref

H+|
)

(58)

The protons generated in the anode CL travel towards the
athode CL. The potential losses of this process will be pos-
tive in the anode because of its positive source term, sH+,a,
nd will become negative as they travel towards the cathode,
ecause of its negative source term sH+,a. However, the calcu-
ations deal with absolute values and this implies that there will
e an “assumed” floating zero potential reference value lying
t one point between the anode and cathode CLs. The position
f this reference value becomes a function of the activity of the
Ls. The overpotentials at each CL are updated on an iterative
asis. As a result it is possible to determine a variable catalytic
ctivity throughout the catalyst layers. By separating the losses
t the CLs the activation overpotentials were calculated using

act,(a,c) = ηtot,(a,c) − |ηe−,(a,c)| − |ηH+,(a,c)| (59)

.6. Solution algorithm
2

ydrogen sH2 – –
ater vapour sH2O,a – sH2O,c

otons sH+ ,a – sH+ ,c
lectrons se− – se−
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Fig. 4. Polarization curves of the “base case” and validation with a different
numerical model and experimental data.

Table 2
Geometric and operational parameters used in the model’s “base case”

Parameter Value Unit

Channel length 10 mm
Channel height 0.5 mm
Channel width 1 mm
GDL thickness 0.3 mm
GDL land area 10 mm2

CL thickness 20 �m
PEM thickness 50 �m
Temperature 353 K
Pressure 1 atm
Hydrogen stoichiometry ratio 2 –
Hydrogen R.H. at inlet 100 %
Air stoichiometry ratio 2 –
Air R.H. at inlet 100 %

Table 3
Base case membrane electrode assembly parameters

Parameter Symbol Value Unit

GDL porosity εGDL 55 %
GDL tortuosity γGDL 1.5 –
GDL heat conductivity keff

mem 0.5 W (mK)−1

GDL electric conductivity Ke− ,GDL 825 s m−1

CL porosity εCL 13 %
CL tortuosity γCL 2.5 –
CL heat conductivity keff

CL 0.82 W (mK)−1

CL electric conductivity Ke− ,CL 250 S m−1

Pt mass loading per unit area of CL mlPt 0.6 mg cm−2

Mass of Pt supported on carbon black mpPt 20 %
Nafion volume fraction in CL – 25 %
PEM heat conductivity keff

CL 0.64 W (mK)−1

Anode’s transfer coefficient αa 0.5 –
Cathode’s transfer coefficient αc 0.5 –
Anode’s exchange current density i0,a 8.0 × 103 A m−2

Cathode’s exchange current density i0,c 4.0 × 10−8 A m−2

Fig. 5. Temperature distribution across the MEA at different cell potentials. (a)
Temperature distribution across the MEA atEcell ≈ 0.8 V and i ≈ 0.01 A cm−2

(T1jps.eps). (b) Temperature distribution across the MEA atEcell ≈ 0.35 V and
i ≈ 0.75 A cm−2.

Fig. 6. Oxygen and hydrogen mass fractions at ι = 0.012 A cm−2and Ecell =
0.8 V. (a)Oxygen mass fraction in the cathode at 0.012 A cm−2and 0.8 V. (b)
Hydrogen mass fraction in the anode at 0.012 A cm−2 and 0.8 V.
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The user-defined code forms part of this algorithm. It begins
ith a prescribed total overpotential at the cathode CL then

he current density is first calculated and stored for the cath-
de side. Following this, the anode’s activation overpotential is
uned in order to match the cathode’s total current. The code
oops through the anode catalyst layer a certain number of times
er iteration in order to approximate the two total currents. If
oth anode and cathode currents still do not match after this
umber of loops the algorithm continues and iterates again. The
terative process changes several variables such as temperature,
ensity, diffusion coefficients, scalar concentrations, proton con-
uctivity, overpotentials, etc. With the calculated total current,
he cell potential can be calculated with an updated value of
he overpotentials. The procedure continues until the anode and
athode total currents match (Table 1).

The computations were preformed on a machine with a 1.4
Hz processor and 512 MB of memory. To obtain a single

olution, about four to eight thousand iterations were required
nd took from 4 to 10 h of CPU time (the latter corresponds to
he high and very low current densities). The flowchart diagram
f the algorithm is shown in Fig. 1.
. Results and discussions

The model was tested under a range of operational conditions.
ig. 4 shows a good agreement between the “base case” results,

ig. 7. Oxygen and hydrogen mass fractions at ι = 0.77 A cm−2 and Ecell =
.37 V. (a) Oxygen mass fraction in the cathode at 0.77 A cm−2 and 0.37 V. (b)
ydrogen mass fraction in the anode at 0.77 A cm−2 and 0.37 V.
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xperimental tests performed by Su et al. [24] and another PEM
uel cell model presented by Carnes and Djilali [7].

.1. Base case model

The base case model presented in this section is the foun-
ation of the analyses performed in this paper. It represents the
losest attempt by the authors to resemble a functional PEM fuel
ell. The geometric parameters and operation conditions of the
ase case model are listed in Table 2.

Table 3.
The temperature field measured in the PEM is shown in Fig. 5

or two different potentials. These figures show how the temper-
ture can increase by up to 5 ◦ C at the given potentials. In a PEM
uel cell the major heat source comes from the entropy change
f the oxygen reduction reaction. That is why it is always the
op part (cathode) of Fig. 5 is slightly warmer than the bottom
anode). The secondary source of heat in this type of cells comes
rom the ohmic resistance of the PEM to ionic conductivity, this
lso contributes to the heating of the cell.

Figs. 6 and 7 show contour planes used to illustrate the con-
D for both anode and cathode sides of the cell. The base case
odel oxygen and hydrogen concentrations are shown in these
gures for two different potentials. The figures show how, at

ig. 8. Activation overpotential distributions in the cathode’s catalyst layer at
ifferent cell potentials. (a) Activation overpotential distribution in the cathode’s
atalyst layer at 0.01 A cm−2and 0.8 V. (b) Activation overpotential distribution
n the cathode’s catalyst layer at 0.77 A cm−2and 0.37 V.
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igh current densities, the reactants are consumed faster than at
ower current densities. It is clear that at these current densities
he most affected species is the oxygen. In fact, at these power
ensities part of the model’s MEA is depleted of oxygen specif-
cally in the regions under the current collectors, as shown in
ig. 7(a). This is partly due to a limited oxygen diffusivity and
lso due to the difficulty in removing the water produced by the
xygen reduction reaction.

On the other hand, it can be seen that on the anode side of
he cell, the hydrogen concentration experiences little change.
ydrogen has a higher diffusivity than oxygen and this allows a
etter transport even at high current densities and low porosities.
n the model presented in this paper hydrogen posed no depletion
hreat. In addition, the anode side of the cell rarely experiences
ooding, therefore its porous medium is almost never blocked.

One important feature of the model presented in this paper is
he way the activation overpotential is calculated. As explained
arlier in Section 2.5, the overpotentials of the cell are calculated
s a function of the species concentration.

The CCL alone, is represented in Figs. 8 and 9 and because
t is only 20 �m thick it has been scaled by several factors in the

direction. These figures illustrate the activation overpotential

nd the local current density distribution in this region. Fig. 8(a)
hows how at a low current density the activation overpotential
s fairly uniform throughout the CCL. However, as the current
ensity increases the concentration of the reactants decreases

ig. 9. Current density distributions in the cathode’s catalyst layer at different
ell potentials. (a) Current density distribution in the cathode’s catalyst layer at
.01 A cm−2 and 0.8 V. (b) Current density distribution in the cathode’s catalyst
ayer at 0.77 A cm−2 and 0.37 V.

m
u
r
t

F
c
0
a

Sources 178 (2008) 269–281 279

nd this has a negative effect in the activation overpotential dis-
ribution, as shown in Fig. 8(b). Here the activation overpotential
s not uniform, the maximum values of the activation overpo-
ential move towards the lower region of the CCL (close to the
CL/PEM interface) under the current collector ribs. The min-

mum values always stay on top of the CCL right below the
athode channel.

These activation overpotential distributions have other effects
n the cell. The Butler-Volmer Eqs. (3) and (4) described the
elation between the activation overpotential and the local cur-
ent density. Fig. 9 shows how the local current density varies
hroughout the CCL. At a low potential the local current density
s evenly distributed, as shown in Fig. 9(a). At high power densi-
ies however, the current distribution is totally uneven (Fig. 9(b)).
he CCL becomes a region of contrasts. Near the CCL/PEM the
urrent is 10 times bigger than its immediate upper region. This
eans that only the very bottom layer of the CCL is powering

he cell. At high current densities the overpotentials near the
CL/PEM interface are so big that almost 90% of the whole
ower density generated in the cathode is produced at this very
hin layer.

Due to the importance of oxygen in the overall cell perfor-
ance its concentration in the CCL is shown in Fig. 10. Note how
nder the current collector ribs the concentration of oxygen is
educed gradually as the current density increases. Once again,
he same tendency of the current density and activation over-

ig. 10. Oxygen concentrations in the cathode’s catalyst layer at different
ell potentials. (a) Oxygen concentration in the cathode’s catalyst layer at
.01 A cm−2and 0.8 V. (b) Oxygen concentration in the cathode’s catalyst layer
t 0.77 A cm−2and 0.37 V.
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otential is reflected in these figures. At low current densities
he availability of oxygen is good enough to fulfill the reactant
equirements (Fig. 10(a)). However, at high current densities the
xygen diffusivity becomes a problem, as it cannot provide the
ate needed to drive the reaction further. At this current densities,
tarvation regions are clearly present under the current collector
ibs, Fig. 10(b).

As explained earlier in Section 2.5, the activation overpoten-
ial is a sum of other overpotentials of a different nature. The
ollowing figures show the distribution of these losses in the cell.
hmic overpotentials: ionic and electronic, are always present

nd play active roles in the calculation of the activation overpo-
ential. Due to the intrinsic electric resistance of the materials in
he cell the losses of these two overpotentials become greater as
he current density increases.

Fig. 11 shows the protonic overpotential distribution at two
ifferent current densities. The loss is the most severe out of
he two ohmic overpotentials. In this model it is a function of
he membrane water content and temperature. The proton and
ater distribution in the membrane are related by the electroos-

otic drag effect. A special procedure to model this relationship
as presented in Section 2.5. This method requires a reference
otential (0 V) located in between the two CLs. However, this
eference potential has a variable position; Fig. 11(a) shows how

ig. 11. Protonic overpotential distributions at different cell potentials. (a)
rotonic overpotential distribution at 0.01 A cm−2and 0.8 V. (b) Protonic over-
otential distribution at ηH+ ,c at 0.77 A cm−2 and 0.37 V.
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ig. 12. Electric overpotential distributions at different cell potentials. (a)
lectric overpotential distribution at 0.77 A cm−2and 0.38 V. (b) Electric over-
otential distribution at 0.77 A cm−2and 0.37 V.

t a low current is hard to distinguish were the reference value
ies. At this power density the ohmic losses are small and the
iggest losses are located at the anode CL. Fig. 11(b) shows
ow the reference value lies clearly in between the two CLs
dopting a curved shape under the current collector ribs. The
iggest losses at this power density are clearly located close to
he cathode CL.

Fig. 12 shows the distribution of the electric overpotentials in
he GDs. Similar to the protonic losses, the electric overpotential
lso uses reference voltages. In this case these reference poten-
ials are stationary. These are set as boundary conditions at the
nterfaces between the GDs and the current collector ribs. This
ondition is reflected in the shape of the contours of Fig. 12. The
lectric overpotential is highest at the region under the channels
nd closer to the inlet boundaries. Once again, it can be seen that
he higher the current density the higher the overpotential.

The protonic and electric overpotential are two conduction
rocesses restricted by the resistance of the materials. The
rotonic diffusion coefficient is calculated as a function of tem-
erature and water content of the membrane (see Section 2.4.4).

. Conclusions
A comprehensive three-dimensional model of a PEM fuel
ell has been developed. The model accounts for all major trans-
ort phenomena in the cell with a single-phase assumption. The
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ransport equations and boundary conditions of each of the cell’s
egions were introduced along with some special boundary con-
itions such as the inlet velocity and the CL and PEM interfaces.

thorough explanation of the processes occurring inside the
lectrolyte was given in Section 2.4.4. It began with the equi-
ibrium water content and continued with water diffusion and
lectroosmotic drag and their impact upon proton and water
onductivity.

We produced a good agreement of the model’s performance
ith some other experimental and numerical models. Some illus-

rations of the model operating at different conditions showed
ow the reactants distribute throughout the cell. The temperature
istribution in the PEM at different cell potentials showed how
he temperature gradient could hinder the material integrity of
he membrane. It was shown how the current density distributes
cross the cathode CL (Fig. 9). To our knowledge these current
ensity distributions have long been measured in experiments
ut never published in a computational model. Similarly the dis-
ribution of the overpotentials were shown in the gas diffusers,
atalyst layers and in the electrolyte.
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